Principles of Crystal Structures for Bravais Lattice: A Study on Symmetry within Lattice and Diffraction Lines in Crystallography
Keywords:
Crystal structures, Bravais lattice, Symmetry, Diffraction lines, CrystallographyAbstract
Crystallography is a crucial field in materials science and chemistry, as it allows researchers to determine the atomic arrangement within crystalline materials. Understanding the symmetry properties of crystal structures is essential for interpreting diffraction patterns accurately. However, the relationship between Bravais lattice symmetry and diffraction lines is not well-understood. This study aims to address this gap in knowledge by investigating the principles of crystal structures for Bravais lattice and their impact on diffraction patterns. To achieve the research objectives, a comprehensive literature review of existing models and simulations was conducted to gather information on the principles of crystal structures, Bravais lattice symmetry and diffraction patterns. The study focused on analyzing the symmetry properties of different Bravais lattices and their corresponding diffraction lines. The findings revealed that the arrangement of lattice points in a crystal structure determines the symmetry properties of the lattice. Moreover, different Bravais lattices exhibit varying degrees of symmetry, which directly influences the diffraction lines observed in Crystallography experiments. The study found that the symmetry operations within a lattice, such as translations, rotations and reflections, play a crucial role in determining the diffraction pattern. The findings contribute to the advancement of materials science and chemistry by enhancing the knowledge required to understand crystal structures and to interpret corresponding diffraction patterns more accurately. However, further research may be conducted to explore the practical applications of these findings in Crystallography and materials science.
References
[1] Mittemeijer, E. J., & Mittemeijer, E. J. (2011). Crystallography. In Fundamentals of materials science: the microstructure-property relationship using metals as model systems (pp. 103–200). Springer. https://link.springer.com/chapter/10.1007/978-3-642-10500-5_4
[2] Dowsett, M., Wiesinger, R., & Adriaens, M. (2021). X-ray diffraction. In Spectroscopy, diffraction and tomography in art and heritage science (pp. 161–207). Elsevier. https://doi.org/10.1016/B978-0-12-818860-6.00011-8
[3] Moore, E. A., & Smart, L. E. (2020). An introduction to crystal structures. In Solid state chemistry: an introduction (pp. 1–64). CRC Press. DOI: 10.1201/b12047-8
[4] Pecharsky, V. K., & Zavalij, P. Y. (2009). Determination and refinement of the unit cell. In Fundamentals of powder diffraction and structural characterization of materials (pp. 407–495). Springer. https://link.springer.com/chapter/10.1007/978-0-387-09579-0_14
[5] Ali, A., Chiang, Y. W., & Santos, R. M. (2022). X-ray diffraction techniques for mineral characterization: a review for engineers of the fundamentals, applications, and research directions. Minerals, 12(2), 205. DOI:10.3390/min12020205
[6] Mckenzie, A. T., & Mckenzie, A. T. (1998). “Nature doth everywhere geometrize”: crystals, crystallization, and Crystallography in the long eighteenth century 1. Studies in eighteenth-century culture, 27(1), 209–236. DOI:10.1353/sec.2010.0304
[7] Scholz, E. (1989). Crystallographic symmetry concepts and group theory (1850-1880). In Institutions and applications (pp. 2–27). Elsevier. https://doi.org/10.1016/B978-0-08-092546-2.50007-X
[8] Kikegawa, T., & Iwasaki, H. (1983). An X-ray diffraction study of lattice compression and phase transition of crystalline phosphorus. Acta crystallographica section b: structural science, 39(2), 158–164. https://journals.iucr.org/paper?buy=yes&cnor=a22093&showscheme=yes&sing=yes
[9] Cheng, K. Y., & Cheng, K. Y. (2020). Atomic bonding and crystal structures. In III–V compound semiconductors and devices: an introduction to fundamentals (pp. 11–55). Springer. https://link.springer.com/chapter/10.1007/978-3-030-51903-2_2
[10] Kubbinga, H. (2012). Crystallography from Haüy to Laue: controversies on the molecular and atomistic nature of solids. Acta crystallographica section a: foundations of crystallography, 68(1), 3–29.
[11] Brückler, F. M., & Stilinović, V. (2023). From friezes to quasicrystals: a history of symmetry groups. In Handbook of the history and philosophy of mathematical practice (pp. 1–42). Springer. https://doi.org/10.1007/978-3-030-19071-2_132-2
[12] Marcos, C. (2022). Periodicity, crystalline lattices, symbols, and notations. In Crystallography: introduction to the study of minerals (pp. 13–47). Springer. https://doi.org/10.1007/978-3-030-96783-3_2
[13] Silva‐Ramírez, E. L., Cumbrera‐Conde, I., Cano‐Crespo, R., & Cumbrera, F. L. (2023). Machine learning techniques for the ab initio Bravais lattice determination. Expert systems, 40(2), e13160. https://doi.org/10.1111/exsy.13160
[14] B Bunaciu, A. A., UdriŞTioiu, E. G., & Aboul-Enein, H. Y. (2015). X-ray diffraction: instrumentation and applications. Critical reviews in analytical chemistry, 45(4), 289–299.
[15] Lin, F., Liu, Y., Yu, X., Cheng, L., Singer, A., Shpyrko, O. G., … & Doeff, M. M. (2017). Synchrotron X-ray analytical techniques for studying materials electrochemistry in rechargeable batteries. Chemical reviews, 117(21), 13123–13186. DOI:10.1021/acs.chemrev.7b00007
[16] Giannini, C., Ladisa, M., Altamura, D., Siliqi, D., Sibillano, T., & De Caro, L. (2016). X-ray diffraction: a powerful technique for the multiple-length-scale structural analysis of nanomaterials. Crystals, 6(8), 87. DOI:10.3390/cryst6080087
[17] Bhardwaj, J., Sastri, O., & Sharda, V. (2017). Stacking 2-D lattices to construct 3-D Bravais lattices. Physics education, 1–10. https://www.researchgate.net/profile/Oruganti-Sastri/publication/323966454_Stacking_2-D_Lattices_to_Construct_3-D_Bravais_Lattices/links/5ab5123445851515f5996d41/Stacking-2-D-Lattices-to-Construct-3-D-Bravais-Lattices.pdf
[18] Hoffmann, F., & Hoffmann, F. (2020). Crystal shapes and Bravais lattices. In Introduction to crystallography (pp. 33–89). Springer. https://link.springer.com/chapter/10.1007/978-3-030-35110-6_2
[19] Grimmer, H. (2015). Partial order among the 14 Bravais types of lattices: Basics and applications. Acta crystallographica section a: foundations and advances, 71(2), 143–149. DOI:10.1107/S2053273314027351
[20] Su, C. Y., Cai, Y. P., Chen, C. L., Smith, M. D., Kaim, W., & Zur Loye, H. C. (2003). Ligand-directed molecular architectures: self-assembly of two-dimensional rectangular metallacycles and three-dimensional trigonal or tetragonal prisms. Journal of the american chemical society, 125(28), 8595–8613. DOI:10.1021/ja034267k
[21] Borisov, S. V., Magarill, S. A., & Pervukhina, N. V. (2012). An interpretation of three intersections of cubic and rhombohedral structures based on the conservative nature of force skeletons. Crystallography reports, 57(5), 656–660. DOI:10.1134/S1063774512050033
[22] Evarestov, R. A. (2007). Space groups and crystalline structures. In Quantum chemistry of solids: the lcao first principles treatment of crystals (pp. 7–46). Springer. https://link.springer.com/chapter/10.1007/978-3-540-48748-7_2
[23] Mehla, S. (2022). Design and fabrication of gold microelectrode arrays for sers-based chemical sensing. DOI: 10.13140/RG.2.2.13913.60003
[24] Spruiell, J. E., & Clark, E. S. (1980). Unit cell and crystallinity. In Methods in experimental physics (Vol. 16, pp. 1–127). Elsevier. DOI: 10.1016/S0076-695X(08)60756-5
[25] Grimvall, G., Magyari-Köpe, B., Ozoliņš, V., & Persson, K. A. (2012). Lattice instabilities in metallic elements. Reviews of modern physics, 84(2), 945–986. DOI:10.1103/RevModPhys.84.945
[26] Sólyom, J., & Sólyom, J. (2007). The structure of crystals. In Fundamentals of the physics of solids: volume I structure and dynamics (pp. 203–240). Springer. https://link.springer.com/chapter/10.1007/978-3-540-72600-5_7
[27] Moeck, P., & DeStefano, P. (2018). Accurate lattice parameters from 2D-periodic images for subsequent Bravais lattice type assignments. Advanced structural and chemical imaging, 4(1), 1–33. DOI:10.1186/s40679-018-0051-z
[28] Chatterjee, S. K. (2008). Crystal symmetry (crystal pattern): I. In Crystallography and the world of symmetry (pp. 23–33). Springer. https://link.springer.com/chapter/10.1007/978-3-540-69899-9_4
[29] Massa, W., & Massa, W. (2004). Crystal lattices. In Crystal structure determination (pp. 3–11). Springer. https://link.springer.com/chapter/10.1007/978-3-662-06431-3_2
[30] Venderbos, J. W. F. (2016). Symmetry analysis of translational symmetry broken density waves: application to hexagonal lattices in two dimensions. Physical review B, 93(11), 115107. DOI:10.1103/PhysRevB.93.115107
[31] Perez, N. (2024). Atomic structure. In Materials science: theory and engineering (pp. 1–50). Springer. https://link.springer.com/chapter/10.1007/978-3-031-57152-7_1
[32] Malgrange, C., Ricolleau, C., & Schlenker, M. (2014). Symmetry and physical properties of crystals. Springer.
[33] Liu, Y., Liu, Y., & Drew, M. G. B. (2017). Comparison of calculations for interplanar distances in a crystal lattice. Crystallography reviews, 23(4), 252–301. DOI:10.1080/0889311X.2017.1323332
[34] Klingshirn, C. F., & Klingshirn, C. F. (2012). Crystals, lattices, lattice vibrations and phonons. In Semiconductor optics (pp. 135–166). Springer. https://link.springer.com/chapter/10.1007/978-3-642-28362-8_7
[35] Muller, P. (2009). Practical suggestions for better crystal structures. Crystallography reviews, 15(1), 57–83. DOI:10.1080/08893110802547240
[36] Zhang, W. Z., & Weatherly, G. C. (2005). On the crystallography of precipitation. Progress in materials science, 50(2), 181–292.
[37] Djohari, H., Milstein, F., & Maroudas, D. (2007). Stability of simple cubic crystals. Applied physics letters, 90(16). DOI:10.1063/1.2724918
[38] Keen, D. A., & Goodwin, A. L. (2015). The crystallography of correlated disorder. Nature, 521(7552), 303–309. DOI:10.1038/nature14453
[39] Gault, B., Moody, M. P., Cairney, J. M., & Ringer, S. P. (2012). Atom probe crystallography. Materials today, 15(9), 378–386. DOI:10.1016/S1369-7021(12)70164-5
[40] Sun, S., Zhang, X., Cui, J., & Liang, S. (2020). Identification of the Miller indices of a crystallographic plane: a tutorial and a comprehensive review on fundamental theory, universal methods based on different case studies and matters needing attention. Nanoscale, 12(32), 16657–16677. DOI:10.1039/d0nr03637d
[41] Banadaki, A. D., & Patala, S. (2015). An efficient algorithm for computing the primitive bases of a general lattice plane. Journal of applied crystallography, 48(2), 585–588.
[42] He, Y. (2024). Stereographic projection of theoretical orientation relationships between crystals of any types in phase transformation and precipitation. Crystal research and technology, 59(1), 2300242. https://doi.org/10.1002/crat.202300242
[43] Hermann, K. (2009). Basics of crystallography. In Computational methods in catalysis and materials science: an introduction for scientists and engineers (pp. 265–294). Wiley Online Library. DOI: 10.1002/9783527625482
[44] Prince, E., & Paufler, P. (1995). Mathematical techniques in crystallography and materials science. Crystal research and technology, 30(3), 318.
[45] Hauptman, H. A. (1991). The phase problem of x-ray crystallography. Reports on progress in physics, 54(11), 1427. DOI: 10.1088/0034-4885/54/11/002
[46] Ameh, E. S. (2019). A review of basic crystallography and x-ray diffraction applications. International journal of advanced manufacturing technology, 105(7–8), 3289–3302. DOI:10.1007/s00170-019-04508-1
[47] Michalski, E. P. (2018). On the new characteristics of Miller indices for centered lattices. Bulletin of the polish academy of sciences, technical sciences, 66(4), 529–538. DOI:10.24425/124269
[48] Zhang, M. X., & Kelly, P. M. (2009). Crystallographic features of phase transformations in solids. Progress in materials science, 54(8), 1101–1170. https://doi.org/10.1016/j.pmatsci.2009.06.001
[49] Im, S. W., Ahn, H. Y., Kim, R. M., Cho, N. H., Kim, H., Lim, Y. C., … & Nam, K. T. (2020). Chiral surface and geometry of metal nanocrystals. Advanced materials, 32(41), 1905758. DOI:10.1002/adma.201905758
[50] Petříček, V., Dušek, M., & Plášil, J. (2016). Crystallographic computing system Jana2006: solution and refinement of twinned structures. Zeitschrift fur kristallographie-crystalline materials, 231(10), 583–599. DOI:10.1515/zkri-2016-1956
[51] Janner, A., & Janssen, T. (2015). From crystal morphology to molecular and scale crystallography. Physica scripta, 90(8), 88007. DOI:10.1088/0031-8949/90/8/088007
[52] Suwas, S., & Ray, R. K. (2014). Crystallographic texture of materials. Springer. https://doi.org/10.1007/978-1-4471-6314-5
[53] Gottstein, G., & Gottstein, G. (2004). Atomic structure of solids. In Physical foundations of materials science (pp. 13–62). Springer. https://link.springer.com/chapter/10.1007/978-3-662-09291-0_3
[54] Wahab, M. A. (2024). Mirror symmetry: the mother of all crystal symmetries. Springer. https://link.springer.com/book/10.1007/978-981-99-8361-2
[55] Nespolo, M. (2018). Geometry of crystals, polycrystals, and phase transformations. By Harshad KDH Bhadeshia. CRC Press, 2018. Hardcover, Pp. xv+ 251. Price GBP 37.59. ISBN 9781138070783. Foundations of crystallography, 74(2), 153–155.
[56] Nespolo, M. (2015). The ash heap of crystallography: restoring forgotten basic knowledge. Journal of applied crystallography, 48(4), 1290–1298. DOI:10.1107/S1600576715011206
[57] Galiulin, R. V. (1981). Crystallographic geometry. Acta crystallographica section a foundations of crystallography, 37(a1), C350–C350. DOI:10.1107/s0108767381089162
[58] Okamoto, P. R., & Thomas, G. (1968). On the four‐axis hexagonal reciprocal lattice and its use in the indexing of transmission electron diffraction patterns. Physica status solidi (B), 25(1), 81–91. DOI:10.1002/pssb.19680250106
[59] Fetisov, G. V. (2020). X-ray diffraction methods for structural diagnostics of materials: progress and achievements. Physics-uspekhi, 63(1), 2. DOI: 10.3367/UFNe.2018.10.038435
[60] Guan, F., Asai, M., Bartkoski, D. A., Kleckner, M., Harel, Z., & Salehpour, M. (2023). Adding the X-ray Bragg reflection physical process in crystal to the Geant4 Monte Carlo simulation toolkit, part I: reflection from a crystal slab. Precision radiation oncology, 7(1), 59-66. DOI:10.1002/pro6.1188
[61] Moradi-Kurdestany, J., Bartkoski, D. A., Tailor, R., Mirkovic, D., Harel, Z., Bar-David, A., … & Salehpour, M. (2022). Dosimetry of a novel focused monoenergetic beam for radiotherapy. Physics in medicine and biology, 67(7), 07NT01. DOI:10.1088/1361-6560/ac5c8f
[62] Shahbazi, H., Tataei, M., Enayati, M. H., Shafeiey, A., & Malekabadi, M. A. (2019). Structure-transmittance relationship in transparent ceramics. Journal of alloys and compounds, 785, 260–285. DOI:10.1016/j.jallcom.2019.01.124
[63] Bettini, A., & Bettini, A. (2017). Diffraction, interference, coherence. In A course in classical physics 4-waves and light (pp. 175–233). Springer. https://link.springer.com/chapter/10.1007/978-3-319-48329-0_5
[64] Mingos, D. M. P. (2020). Early history of x-ray crystallography. In 21st century challenges in chemical crystallography I: history and technical developments (pp. 1–41). Springer. https://link.springer.com/chapter/10.1007/430_2020_73
[65] Schwartz, L. H., Cohen, J. B., Schwartz, L. H., & Cohen, J. B. (1987). The nature of diffraction. In Diffraction from materials (pp. 46–76). Springer. https://link.springer.com/chapter/10.1007/978-3-642-82927-7_2
[66] Vainshtein, B. K. (2013). Fundamentals of crystals: symmetry, and methods of structural crystallography (Vol. 1). Springer Science & Business Media. https://books.google.com/books/about/Fundamentals_of_Crystals.html?id=AtPqCAAAQBAJ
[67] Esterhuysen, C. (2014). Crystallography-a modern science with a rich history. Quest, 10(3), 3–8.
[68] De Graef, M., & McHenry, M. E. (2012). Structure of materials: an introduction to crystallography, diffraction and symmetry. Cambridge University Press.
[69] Macchi, P. (2020). The connubium between crystallography and quantum mechanics. Crystallography reviews, 26(4), 209–268.
[70] Waseda, Y., Matsubara, E., & Shinoda, K. (2011). X-ray diffraction crystallography; introduction, examples and solved problems. Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki. Springer Science & Business Media. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:No+Title#0
[71] Zheng, H., Hou, J., Zimmerman, M. D., Wlodawer, A., & Minor, W. (2014). The future of crystallography in drug discovery. Expert opinion on drug discovery, 9(2), 125–137. DOI:10.1517/17460441.2014.872623
[72] Bruno, I., Gražulis, S., Helliwell, J. R., Kabekkodu, S. N., McMahon, B., & Westbrook, J. (2017). Crystallography and databases. Data science journal, 16, 38. DOI:10.5334/dsj-2017-038
[73] Ziletti, A., Kumar, D., Scheffler, M., & Ghiringhelli, L. M. (2018). Insightful classification of crystal structures using deep learning. Nature communications, 9(1), 2775. DOI:10.1038/s41467-018-05169-6
[74] Rathore, I., Mishra, V., & Bhaumik, P. (2021). Advancements in macromolecular crystallography: from past to present. Emerging topics in life sciences, 5(1), 127–149. DOI:10.1042/ETLS20200316
[75] Hoja, J., Reilly, A. M., & Tkatchenko, A. (2017). First-principles modeling of molecular crystals: structures and stabilities, temperature and pressure. Wiley interdisciplinary reviews: computational molecular science, 7(1), e1294. DOI:10.1002/wcms.1294
[76] Su, X. D., Zhang, H., Terwilliger, T. C., Liljas, A., Xiao, J., & Dong, Y. (2015). Protein crystallography from the perspective of technology developments. Crystallography reviews, 21(1–2), 122–153. DOI:10.1080/0889311X.2014.973868
[77] Dauter, Z., & Wlodawer, A. (2016). Progress in protein crystallography. Protein & peptide letters, 23(3), 201–210. DOI:10.2174/0929866523666160106153524