Stem Cell Development: Recent Improvements
Keywords:
Embryonic stem cell, Mesenchymal stem cell, RegenerativeAbstract
In the early stages of life and growth, stem cells possess the remarkable ability to differentiate into a wide variety of cell types found in the body. Understanding the biochemical and metabolic processes, as well as the feedback linked to various stem cell responses, has advanced significantly. Limited cell survival, senescence-induced genetic instability or loss of function, and immune-mediated rejection are some of the difficulties associated with transplanted embryonic and Mesenchymal Stem Cells (MSCs). This study provides an overview of the most current knowledge and developments on stem cell development. Currently, research on stem cell treatment is being conducted for almost all human body tissues and organ types. Professionals with expertise in cell harvesting, culture, expansion, transplantation, and polymer design are crucial for the effective use of stem cell technology, as it currently encompasses the domains of engineering, materials science, and transplantation. Varying stem cell treatments are in varying phases of development; some are in preclinical studies, others are in clinical usage, and some are still in the discovery phase. Recent developments indicate that stem cell treatment may eventually have broader clinical relevance since it offers a promising therapeutic alternative for patients with a variety of degenerative diseases who need the replacement of lost tissue and cells. The discipline of regenerative medicine is a comprehensive scientific subject that has emerged more recently because of significant advancements in stem cell biology, tissue engineering, and nuclear transfer procedures. However, before initiating therapeutic uses, a deeper comprehension of the biology, manipulation, and safety of stem cells in tissue regeneration and repair is necessary.
References
[1] Rusu, E., Necula, L. G., Neagu, A. I., Alecu, M., Stan, C., Albulescu, R., & Tanase, C. P. (2016). Current status of stem cell therapy: opportunities and limitations. Turkish journal of biology, 40(5), 955–967. https://journals.tubitak.gov.tr/biology/vol40/iss5/1/
[2] Pavelić, K. (2008). Stem cell research: status, prospects and prerequisites [presentation]. Medicine and law. https://www.croris.hr/crosbi/publikacija/prilog-skup/535473
[3] Raina, P., O’Donnell, M., Schwellnus, H., Rosenbaum, P., King, G., Brehaut, J., & Wong, M. (2004). Caregiving process and caregiver burden: conceptual models to guide research and practice. BMC pediatrics, 4, 1–13. https://link.springer.com/article/10.1186/1471-2431-4-1
[4] Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., & Jones, J. M. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145–1147. DOI:10.1126/science.282.5391.1145
[5] Salem, H. K., & Thiemermann, C. (2009). Mesenchymal stromal cells: current understanding and clinical status. Stem cells, 28(3), 585–596. DOI:10.1002/stem.269
[6] Cancedda, R., Bianchi, G., Derubeis, A., & Quarto, R. (2003). Cell therapy for bone disease: a review of current status. Stem cells, 21(5), 610–619. DOI:10.1634/stemcells.21-5-610
[7] Beeres, S. L. M. A., Bengel, F. M., Bartunek, J., Atsma, D. E., Hill, J. M., Vanderheyden, M., & Bax, J. J. (2007). Role of imaging in cardiac stem cell therapy. Journal of the american college of cardiology, 49(11), 1137–1148. https://www.sciencedirect.com/science/article/pii/S0735109706032062
[8] Ratajczak, M. Z., Kucia, M., Jadczyk, T., Greco, N. J., Wojakowski, W., Tendera, M., & Ratajczak, J. (2012). Pivotal role of paracrine effects in stem cell therapies in regenerative medicine: can we translate stem cell-secreted paracrine factors and microvesicles into better therapeutic strategies? Leukemia, 26(6), 1166–1173. DOI:10.1038/leu.2011.389
[9] Sharma, S., & Bhonde, R. (2011). Current status of stem cell therapy for cochlear hair regeneration. Current status of stem cell therapy, 26(1), 1–8. http://ishaindia.org.in/jisha_Vol26_1_articles_final/current_status_of_stem_cell_therapy.pdf
[10] Slavin, S., Nagler, A., Naparstek, E., Kapelushnik, Y., Aker, M., Cividalli, G., & Or, R. (1998). Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cytoreduction for the treatment of malignant and nonmalignant hematologic Diseases. Blood, 91(3), 756–763. DOI:10.1182/blood.V91.3.756
[11] Clarke, M. F., Dick, J. E., Dirks, P. B., Eaves, C. J., Jamieson, C. H. M., Jones, D. L., & Wahl, G. M. (2006). Cancer stem cells--perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Research.
[12] Trindade, F., Leite-Moreira, A., Ferreira-Martins, J., Ferreira, R., Falcão-Pires, I., & Vitorino, R. (2017). Towards the standardization of stem cell therapy studies for ischemic heart diseases: Bridging the gap between animal models and the clinical setting. International journal of cardiology, 228, 465–480. DOI:10.1016/j.ijcard.2016.11.236
[13] Liras, A. (2010). Future research and therapeutic applications of human stem cells: general, regulatory, and bioethical aspects. Journal of translational medicine, 8(1), 131. DOI:10.1186/1479-5876-8-131
[14] Codina, M., Elser, J., & Margulies, K. B. (2010). Current Status of Stem Cell Therapy in Heart Failure. Current cardiology reports, 12(3), 199–208. DOI:10.1007/s11886-010-0098-5
[15] Angelini, P., & Markwald, R. R. (2005). Review of Literature: Stem Cell Treatment of the Heart: A Review of Its Current Status on the Brink of Clinical Experimentation. Texas heart institute journal/from the texas heart institute of st. luke’s episcopal hospital, texas children’s hospital, 32(4), 479. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1351818/
[16] Bernstein, H. S., & Srivastava, D. (2012). Stem cell therapy for cardiac disease. Pediatric research, 71(2), 491–499. DOI:10.1038/pr.2011.61
[17] Klimanskaya, I., Chung, Y., Becker, S., Lu, S.-J., & Lanza, R. (2006). Human embryonic stem cell lines derived from single blastomeres. Nature, 444(7118), 481–485. DOI:10.1038/nature05142
[18] Thomson, J. A., Kalishman, J., Golos, T. G., Durning, M., Harris, C. P., Becker, R. A., & Hearn, J. P. (1995). Isolation of a primate embryonic stem cell line. Proceedings of the national academy of sciences, 92(17), 7844–7848. DOI:10.1073/pnas.92.17.7844
[19] Lei, T., Jacob, S., Ajil-Zaraa, I., Dubuisson, J. B., Irion, O., Jaconi, M., & Feki, A. (2007). Xeno-free derivation and culture of human embryonic stem cells: current status, problems and challenges. Cell research, 17(8), 682–688. DOI:10.1038/cr.2007.61
[20] Murphy, M. B., Moncivais, K., & Caplan, A. I. (2013). Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Experimental & molecular medicine, 45(11), e54. DOI:10.1038/emm.2013.94
[21] Trounson, A. (2002). Human embryonic stem cells: mother of all cell and tissue types. Reproductive biomedicine online, 4, 58–63. https://www.sciencedirect.com/science/article/pii/S1472648312600133
[22] Reubinoff, B. E., Itsykson, P., Turetsky, T., Pera, M. F., Reinhartz, E., Itzik, A., & Ben-Hur, T. (2001). Neural progenitors from human embryonic stem cells. Nature biotechnology, 19(12), 1134–1140. DOI:10.1038/nbt1201-1134
[23] Cowan, C. A., Klimanskaya, I., McMahon, J., Atienza, J., Witmyer, J., Zucker, J. P., … Powers, D. (2004). Derivation of embryonic stem-cell lines from human blastocysts. New england journal of medicine, 350(13), 1353–1356. https://www.nejm.org/doi/abs/10.1056/NEJMsr040330
[24] Klimanskaya, I., Chung, Y., Meisner, L., Johnson, J., West, M. D., & Lanza, R. (2005). Human embryonic stem cells derived without feeder cells. The lancet, 365(9471), 1636–1641.
[25] Reubinoff, B. E., Pera, M. F., Fong, C. Y., Trounson, A., & Bongso, A. (2000). Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nature biotechnology, 18(4), 399–404. DOI:10.1038/74447
[26] Trounson, A. (2006). The production and directed differentiation of human embryonic stem cells. Endocrine reviews, 27(2), 208–219. DOI:10.1210/er.2005-0016
[27] Verlinsky, Y., Strelchenko, N., Kukharenko, V., Rechitsky, S., Verlinsky, O., & Kuliev, A. (2008). Preimplantation genetic diagnosis as a source of human embryonic stem cell lines with genetic disorders. Reproductive biomedicine online, 17, S-31. DOI:10.1016/S1472-6483(11)60665-2
[28] Kukharenko, V., Strelchenko, N., Galat, V., & Sky, O. (2004). Panel of human embryonic stem cell lines [presentation]. Proc international society for stem cell research 2nd annual meeting, boston, MA (p. 87).
[29] Kim, H. S., Oh, S. K., Park, Y. Bin, Ahn, H. J., Sung, K. C., Kang, M. J., … Moon, S. Y. (2005). Methods for derivation of human embryonic stem cells. Stem cells, 23(9), 1228–1233. DOI:10.1634/stemcells.2004-0296
[30] Amit, M., Carpenter, M. K., Inokuma, M. S., Chiu, C. P., Harris, C. P., Waknitz, M. A., … Thomson, J. A. (2000). Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Developmental biology, 227(2), 271–278. https://www.sciencedirect.com/science/article/pii/S0012160600999123
[31] Eiges, R., Schuldiner, M., Drukker, M., Yanuka, O., Itskovitz-Eldor, J., & Benvenisty, N. (2001). Establishment of human embryonic stem cell-transfected clones carrying a marker for undifferentiated cells. Current biology, 11(7), 514–518. DOI:10.1016/S0960-9822(01)00144-0
[32] Zwaka, T. P., & Thomson, J. A. (2003). Homologous recombination in human embryonic stem cells. Nature biotechnology, 21(3), 319–321. DOI:10.1038/nbt788
[33] Vallier, L., Rugg‐Gunn, P. J., Bouhon, I. A., Andersson, F. K., Sadler, A. J., & Pedersen, R. A. (2004). Enhancing and diminishing gene function in human embryonic stem cells. Stem cells, 22(1), 2–11. DOI:10.1634/stemcells.22-1-2
[34] Sperger, J. M., Chen, X., Draper, J. S., Antosiewicz, J. E., Chon, C. H., Jones, S. B., … Thomson, J. A. (2003). Gene expression patterns in human embryonic stem cells and human pluripotent germ cell tumors. Proceedings of the national academy of sciences, 100(23), 13350–13355. DOI:10.1073/pnas.2235735100
[35] Hanna, L. A., Foreman, R. K., Tarasenko, I. A., Kessler, D. S., & Labosky, P. A. (2002). Requirement for Foxd3 in maintaining pluripotent cells of the early mouse embryo. Genes & development, 16(20), 2650–2661.
[36] Caplan, A. I., & Dennis, J. E. (2006). Mesenchymal stem cells as trophic mediators. Journal of cellular biochemistry, 98(5), 1076–1084.
[37] Richards, M., Tan, S. P., Tan, J. H., Chan, W.-K., & Bongso, A. (2004). The transcriptome profile of human embryonic stem cells as defined by SAGE. Stem cells (DAYTON, OHIO), 22(1), 51–64. DOI:10.1634/stemcells.22-1-51
[38] Ding, S., Wu, T. Y. H., Brinker, A., Peters, E. C., Hur, W., Gray, N. S., & Schultz, P. G. (2003). Synthetic small molecules that control stem cell fate. Proceedings of the national academy of sciences, 100(13), 7632–7637. https://www.pnas.org/doi/abs/10.1073/pnas.0732087100
[39] Pittenger, M. F., Mosca, J. D., & McIntosh, K. R. (2000). Human mesenchymal stem cells: progenitor cells for cartilage, bone, fat and stroma. Lymphoid organogenesis (pp. 3–11). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-57276-0_1
[40] Karp, J. M., & Teo, G. S. L. (2009). Mesenchymal stem cell homing: the devil is in the details. Cell stem cell, 4(3), 206–216.
[41] Sakai, D., Mochida, J., Iwashina, T., Watanabe, T., Nakai, T., Ando, K., & Hotta, T. (2005). Differentiation of mesenchymal stem cells transplanted to a rabbit degenerative disc model: potential and limitations for stem cell therapy in disc regeneration. Spine, 30(21), 2379–2387.
[42] da Silva Meirelles, L., Fontes, A. M., Covas, D. T., & Caplan, A. I. (2009). Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine & growth factor reviews, 20(5–6), 419–427. https://www.sciencedirect.com/science/article/pii/S135961010900077X
[43] Holgate, S. T., Davies, D. E., Lackie, P. M., Wilson, S. J., Puddicombe, S. M., & Lordan, J. L. (2000). Epithelial-mesenchymal interactions in the pathogenesis of asthma. Journal of allergy and clinical immunology, 105(2), 193–204. https://www.sciencedirect.com/science/article/pii/S0091674900900666
[44] Aggarwal, S., & Pittenger, M. F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 105(4), 1815–1822. https://ashpublications.org/blood/article-abstract/105/4/1815/20380
[45] Parekkadan, B., Van Poll, D., Suganuma, K., Carter, E. A., Berthiaume, F., Tilles, A. W., & Yarmush, M. L. (2007). Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure. PloS one, 2(9), e941. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0000941
[46] Block, G. J., Ohkouchi, S., Fung, F., Frenkel, J., Gregory, C., Pochampally, R., … Prockop, D. J. (2009). Multipotent stromal cells are activated to reduce apoptosis in part by upregulation and secretion of stanniocalcin-1. Stem cells, 27(3), 670–681. https://academic.oup.com/stmcls/article-abstract/27/3/670/6401911
[47] Rehman, J., Traktuev, D., Li, J., Merfeld-Clauss, S., Temm-Grove, C. J., Bovenkerk, J. E., … March, K. L. (2004). Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation, 109(10), 1292–1298.
[48] Andrä, J., Berninghausen, O., Wülfken, J., & Leippe, M. (1996). Shortened amoebapore analogs with enhanced antibacterial and cytolytic activity. FEBS letters, 385(1–2), 96–100. https://www.sciencedirect.com/science/article/pii/0014579396003596
[49] Krasnodembskaya, A., Song, Y., Fang, X., Gupta, N., Serikov, V., Lee, J. W., & Matthay, M. A. (2010). Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem cells, 28(12), 2229–2238. https://academic.oup.com/stmcls/article-abstract/28/12/2229/6408874
[50] Haynesworth, S. E., Barer, M. A., & Caplan, A. I. (1992). Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone, 13(1), 69–80. https://www.sciencedirect.com/science/article/pii/8756328292903632
[51] Jones, E. A., Kinsey, S. E., English, A., Jones, R. A., Straszynski, L., Meredith, D. M., … McGonagle, D. (2002). Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells. Arthritis and rheumatism, 46(12), 3349–3360. DOI:10.1002/art.10696
[52] Jones, E., & McGonagle, D. (2008). Human bone marrow mesenchymal stem cells in vivo. Rheumatology (oxford, england), 47(2), 126–131. DOI:10.1093/rheumatology/kem206
[53] Dominici, M. L. B. K., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F. C., Krause, D. S., ... & Horwitz, E. M. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315-317.
[54] Crisan, M., Yap, S., Casteilla, L., Chen, C.-W., Corselli, M., Park, T. S., … Zhang, L. (2008). A perivascular origin for mesenchymal stem cells in multiple human organs. Cell stem cell, 3(3), 301–313. https://www.cell.com/cell-stem-cell/fulltext/S1934-5909(08)00337-8
[55] Frantz, S., Bauersachs, J., & Ertl, G. (2009). Post-infarct remodelling: contribution of wound healing and inflammation. Cardiovascular research, 81(3), 474–481. https://academic.oup.com/cardiovascres/article-abstract/81/3/474/409000
[56] Lai, R. C., Chen, T. S., & Lim, S. K. (2011). Mesenchymal stem cell exosome: a novel stem cell-based therapy for cardiovascular disease. Regenerative medicine, 6(4), 481–492. https://www.tandfonline.com/doi/abs/10.2217/rme.11.35
[57] McKay, R. G., Pfeffer, M. A., Pasternak, R. C., Markis, J. E., Come, P. C., Nakao, S., … Grossman, W. (1986). Left ventricular remodeling after myocardial infarction: a corollary to infarct expansion. Circulation, 74(4), 693–702. https://www.ahajournals.org/doi/abs/10.1161/01.CIR.74.4.693
[58] van Ramshorst, J., Bax, J. J., Beeres, S. L. M. A., Dibbets-Schneider, P., Roes, S. D., Stokkel, M. P. M., … Boersma, E. (2009). Intramyocardial bone marrow cell injection for chronic myocardial ischemia: a randomized controlled trial. Jama, 301(19), 1997–2004. https://jamanetwork.com/journals/jama/article-abstract/183930
[59] Traverse, J. H., Henry, T. D., Pepine, C. J., Willerson, J. T., & Ellis, S. G. (2014). One-year follow-up of intracoronary stem cell delivery on left ventricular function following ST-elevation myocardial infarction. Jama, 311(3), 301–302. https://jamanetwork.com/journals/jama/article-abstract/1780016
[60] Williams, A. R., Trachtenberg, B., Velazquez, D. L., McNiece, I., Altman, P., Rouy, D., … Fishman, J. (2011). Intramyocardial stem cell injection in patients with ischemic cardiomyopathy: functional recovery and reverse remodeling. Circulation research, 108(7), 792–796. https://www.ahajournals.org/doi/abs/10.1161/circresaha.111.242610
[61] Hare, J. M., Fishman, J. E., Gerstenblith, G., Velazquez, D. L. D., Zambrano, J. P., Suncion, V. Y., … Brinker, J. A. (2012). Comparison of allogeneic vs autologous bone marrow–derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. Jama, 308(22), 2369–2379. https://jamanetwork.com/journals/jama/article-abstract/1388970
[62] Haack-Sørensen, M., Friis, T., Mathiasen, A. B., Jørgensen, E., Hansen, L., Dickmeiss, E., … Kastrup, J. (2013). Direct intramyocardial mesenchymal stromal cell injections in patients with severe refractory angina: one-year follow-up. Cell transplantation, 22(3), 521–528.
[63] Yang, J., Yamato, M., Nishida, K., Ohki, T., Kanzaki, M., Sekine, H., … Okano, T. (2006). Cell delivery in regenerative medicine: The cell sheet engineering approach. Journal of controlled release, 116(2), 193–203. https://www.sciencedirect.com/science/article/pii/S0168365906003208
[64] Burdon, T. J., Paul, A., Noiseux, N., Prakash, S., & Shum-Tim, D. (2011). Bone marrow stem cell derived paracrine factors for regenerative medicine: current perspectives and therapeutic potential. Bone marrow research, 2011(1), 207326. https://onlinelibrary.wiley.com/doi/abs/10.1155/2011/207326
[65] Solanki, A., Kim, J. D., & Lee, K. B. (2008). Nanotechnology for regenerative medicine: nanomaterials for stem cell imaging. 567-578. https://doi.org/10.2217/17435889.3.4.567
[66] Tobita, M., Orbay, H., & Mizuno, H. (2011). Adipose-derived stem cells: current findings and future perspectives. Discovery medicine, 11(57), 160–170. http://www.discoverymedicine.com/Morikuni-Tobita/2011/02/23/adipose-derived-stem-cells-current-findings-and-future-perspectives/
[67] Sakai, D. (2008). Future perspectives of cell-based therapy for intervertebral disc disease. European spine journal, 17(4), 452–458.
[68] Tong, L. M., Fong, H., & Huang, Y. (2015). Stem cell therapy for Alzheimer’s disease and related disorders: current status and future perspectives. Experimental & molecular medicine, 47(3), e151–e151. https://www.nature.com/articles/emm2014124