Biopolymers As Smart Drug Carriers in Cancer Therapy: Innovations and Perspectives

Authors

  • Nazanin Malek Mohammadi * Mechanical Engineering Department, Morvarid Intelligent Industrial Systems Research Group, Iran.

https://doi.org/10.48313/bic.vi.41

Abstract

Cancer continues to pose a major global health burden, largely due to the limitations of conventional therapies, including non-specific drug distribution, systemic toxicity, and the emergence of multidrug resistance. Biopolymer-based smart drug delivery systems have emerged as promising platforms that can enhance tumor selectivity and therapeutic efficacy while reducing adverse effects. Natural and synthetic biopolymers offer key advantages, including biocompatibility, controlled biodegradability, tunable surface functionality, and the ability to form diverse nanoscale architectures that enable precise drug loading and targeted release. Recent advances have demonstrated the potential of biopolymer-derived nanoparticles, micelles, hydrogels, nanogels, and polymer-drug conjugates to respond to tumor-specific stimuli, including pH gradients, enzymatic activity, hypoxia, and external triggers. This review highlights major classes of biopolymers, design strategies for targeted and stimuli-responsive delivery, and their therapeutic applications across chemotherapy, gene delivery, and immunomodulation. Key challenges such as scalability, stability, and clinical translation are critically examined, and future perspectives are provided to guide the development of next-generation biopolymer-based smart carriers for precision cancer therapy. 

Keywords:

Biopolymer, Drug delivery, Nanoparticles, Cancer, Hydrogel

References

  1. [1] Yadav, N., Singh, D., Rawat, M., & Sangwan, N. (2022). Novel archetype in cancer therapeutics: exploring prospective of phytonanocarriers. 3 biotech, 12(11), 324. https://doi.org/10.1007/s13205-022-03372-3

  2. [2] da Silva Feltrin, F., Agner, T., Sayer, C., & Lona, L. M. F. (2022). Curcumin encapsulation in functional PLGA nanoparticles: A promising strategy for cancer therapies. Advances in colloid and interface science, 300, 102582. https://doi.org/10.1016/j.cis.2021.102582

  3. [3] Dong, S., Guo, X., Han, F., He, Z., & Wang, Y. (2022). Emerging role of natural products in cancer immunotherapy. Acta pharmaceutica sinica b, 12(3), 1163–1185. https://doi.org/10.1016/j.apsb.2021.08.020

  4. [4] Feng, L., Liu, R., Zhang, X., Li, J., Zhu, L., Li, Z., … ., & Zhang, A. (2021). Thermo-gelling dendronized chitosans as biomimetic scaffolds for corneal tissue engineering. ACS applied materials & interfaces, 13(41), 49369–49379. https://pubs.acs.org/doi/10.1021/acsami.1c16087?goto=supporting-info

  5. [5] Ashrafizadeh, M., Delfi, M., Zarrabi, A., Bigham, A., Sharifi, E., Rabiee, N., … ., & Makvandi, P. (2022). Stimuli-responsive liposomal nanoformulations in cancer therapy: Pre-clinical & clinical approaches. Journal of controlled release, 351, 50–80. https://doi.org/10.1016/j.jconrel.2022.08.001

  6. [6] Xin, Y., Quan, L., Zhang, H., & Ao, Q. (2023). Emerging polymer-based nanosystem strategies in the delivery of antifungal drugs. Pharmaceutics, 15(7). https://doi.org/10.3390/pharmaceutics15071866

  7. [7] Bhatia, S. N., Chen, X., Dobrovolskaia, M. A., & Lammers, T. (2022). Cancer nanomedicine. Nature reviews cancer, 22(10), 550–556. https://doi.org/10.1038/s41568-022-00496-9

  8. [8] Mu, W., Chu, Q., Liu, Y., & Zhang, N. (2020). A review on nano-based drug delivery system for cancer chemoimmunotherapy. Nano-micro letters, 12(1), 142. https://doi.org/10.1007/s40820-020-00482-6

  9. [9] Quader, S., & Kataoka, K. (2017). Nanomaterial-enabled cancer therapy. Molecular therapy, 25(7), 1501–1513. https://doi.org/10.1016/j.ymthe.2017.04.026

  10. [10] Moghaddam, F. D., Zare, E. N., Hassanpour, M., Bertani, F. R., Serajian, A., Ziaei, S. F., … ., & Xu, Y. (2024). Chitosan-based nanosystems for cancer diagnosis and therapy: Stimuli-responsive, immune response, and clinical studies. Carbohydrate polymers, 330, 121839. https://doi.org/10.1016/j.carbpol.2024.121839

  11. [11] Zhu, H., Loh, X. J., Ye, E., & Li, Z. (2022). Polymeric matrix-based nanoplatforms toward tumor therapy and diagnosis. ACS materials letters, 4(1), 21–48. https://doi.org/10.1021/acsmaterialslett.1c00558

  12. [12] Khan, H., Mirzaei, H. R., Amiri, A., Kupeli Akkol, E., Ashhad Halimi, S. M., & Mirzaei, H. (2021). Glyco-nanoparticles: New drug delivery systems in cancer therapy. Seminars in cancer biology, 69, 24–42. https://doi.org/10.1016/j.semcancer.2019.12.004

  13. [13] Abulateefeh, S. R. (2023). Long-acting injectable PLGA/PLA depots for leuprolide acetate: Successful translation from bench to clinic. Drug delivery and translational research, 13(2), 520–530. https://doi.org/10.1007/s13346-022-01228-0

  14. [14] Thakkar, S., Sharma, D., Kalia, K., & Tekade, R. K. (2020). Tumor microenvironment targeted nanotherapeutics for cancer therapy and diagnosis: A review. Acta biomaterialia, 101, 43–68. https://doi.org/10.1016/j.actbio.2019.09.009

  15. [15] Liu, J., Li, M., Luo, Z., Dai, L., Guo, X., & Cai, K. (2017). Design of nanocarriers based on complex biological barriers in vivo for tumor therapy. Nano today, 15, 56–90. https://doi.org/10.1016/j.nantod.2017.06.010

  16. [16] Dutta, B., Barick, K. C., & Hassan, P. A. (2021). Recent advances in active targeting of nanomaterials for anticancer drug delivery. Advances in colloid and interface science, 296, 102509. https://doi.org/10.1016/j.cis.2021.102509

  17. [17] Singh, A. K., Bahadur, S., Yadav, D., & Dabas, H. (2023). Pharmaceutical and pharmacokinetic aspects of nanoformulation based drug delivery systems for anti-cancer drugs. Current pharmaceutical design, 29(24), 1896–1906. https://doi.org/10.2174/1381612829666230824144727

  18. [18] Zhou, M., Dong, J., Huang, J., Ye, W., Zheng, Z., Huang, K., … ., Zhang, J. (2022). Chitosan-gelatin-EGCG nanoparticle-meditated LncRNA TMEM44-AS1 silencing to activate the P53 signaling pathway for the synergistic reversal of 5-FU resistance in gastric cancer. Advanced science, 9(22), 2105077. https://doi.org/10.1002/advs.202105077

  19. [19] Jia, X., Fan, X., Chen, C., Lu, Q., Zhou, H., Zhao, Y., … ., & Geng, H. (2024). Chemical and structural engineering of gelatin-based delivery systems for therapeutic applications: A review. Biomacromolecules, 25(2), 564–589. https://doi.org/10.1021/acs.biomac.3c01021

  20. [20] Stevanovic, M. (2017). Polymeric micro-and nanoparticles for controlled and targeted drug delivery. In Nanostructures for drug delivery; elsevier: Amsterdam, the netherlands (pp. 355–378). Elsevier. https://doi.org/10.1016/b978-0-323-46143-6.00011-7

  21. [21] He, B., Sui, X., Yu, B., Wang, S., Shen, Y., & Cong, H. (2020). Recent advances in drug delivery systems for enhancing drug penetration into tumors. Drug delivery, 27(1), 1474–1490. https://doi.org/10.1080/10717544.2020.1831106

  22. [22] de La Torre, L. G., Sipoli, C. C., Oliveira, A. F., Eş, I., Pessoa, A. C. S. N., Vitor, M. T., … ., & F. Naves, T. (2017). Biopolymers for gene delivery applications. In Biopolymer-based composites (pp. 289–323). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-101914-6.00010-7

  23. [23] Madej, M., Kurowska, N., & Strzalka-Mrozik, B. (2022). Polymeric nanoparticles—tools in a drug delivery system in selected cancer therapies. Applied sciences, 12(19), 1–21. https://doi.org/10.3390/app12199479

  24. [24] Tekade, R. K., Maheshwari, R., & Tekade, M. (2017). Biopolymer-based nanocomposites for transdermal drug delivery. In Biopolymer-based composites (pp. 81–106). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-101914-6.00004-1

  25. [25] Reddy, M. S. B., Ponnamma, D., Choudhary, R., & Sadasivuni, K. K. (2021). A comparative review of natural and synthetic biopolymer composite scaffolds. Polymers, 13(7), 1–51. https://doi.org/10.3390/polym13071105

  26. [26] Gopi, S., Amalraj, A., Sukumaran, N. P., Haponiuk, J. T., & Thomas, S. (2018). Biopolymers and their composites for drug delivery: A brief review. Macromolecular symposia, 480, 1800114. https://doi.org/10.1002/masy.201800114

  27. [27] Gheorghita, R., Anchidin-Norocel, L., Filip, R., Dimian, M., & Covasa, M. (2021). Applications of biopolymers for drugs and probiotics delivery. Polymers, 13(16), 1–32. https://doi.org/10.3390/polym13162729

  28. [28] Dutta, R., Mohapatra, S. S., & Mohapatra, S. (2021). Biopolymeric systems for the delivery of nucleic acids. In Tailor-made and functionalized biopolymer systems (pp. 635–661). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-821437-4.00009-8

  29. [29] Herdiana, Y., Husni, P., Nurhasanah, S., Shamsuddin, S., & Wathoni, N. (2023). Chitosan-based nano systems for natural antioxidants in breast cancer therapy. Polymers, 15(13), 1–28. https://doi.org/10.3390/polym15132953

  30. [30] Paul, P., Nandi, G., Abosheasha, M. A., & Bera, H. (2021). Alginate-based systems for protein and peptide delivery. In Tailor-made and functionalized biopolymer systems (pp. 85–113). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-821437-4.00011-6

  31. [31] Zahavi, D., & Weiner, L. (2020). Monoclonal antibodies in cancer therapy. Antibodies, 9(3), 1–20. https://doi.org/10.3390/antib9030034

  32. [32] Le, T. M. D., Yoon, A. R., Thambi, T., & Yun, C. O. (2022). Polymeric systems for cancer immunotherapy: A review. Frontiers in immunology, 13, 826876. https://doi.org/10.3389/fimmu.2022.826876

  33. [33] Makadia, H. K., & Siegel, S. J. (2011). Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers, 3(3), 1377–1397. https://doi.org/10.3390/polym3031377

  34. [34] Lin, A., Giuliano, C. J., Palladino, A., John, K. M., Abramowicz, C., Yuan, M. Lou, … ., & Sheltzer, J. M. (2019). Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials. Science translational medicine, 11(509), eaaw8412. https://doi.org/10.1126/scitranslmed.aaw8412

  35. [35] Kamaly, N., Yameen, B., Wu, J., & Farokhzad, O. C. (2016). Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chemical reviews, 116(4), 2602–2663. https://doi.org/10.1021/acs.chemrev.5b00346

  36. [36] Alvi, M., Yaqoob, A., Rehman, K., Shoaib, S. M., & Akash, M. S. H. (2022). PLGA-based nanoparticles for the treatment of cancer: Current strategies and perspectives. AAPS open, 8(1), 12. https://doi.org/10.1186/s41120-022-00060-7

  37. [37] Wei, R., Liu, S., Zhang, S., Min, L., & Zhu, S. (2020). Cellular and extracellular components in tumor microenvironment and their application in early diagnosis of cancers. Analytical cellular pathology, 2020(1), 6283796. https://doi.org/10.1155/2020/6283796

  38. [38] Kim, S. M., Faix, P. H., & Schnitzer, J. E. (2017). Overcoming key biological barriers to cancer drug delivery and efficacy. Journal of controlled release, 267, 15–30. https://doi.org/10.1016/j.jconrel.2017.09.016

  39. [39] Zhang, W., Mehta, A., Tong, Z., Esser, L., & Voelcker, N. H. (2021). Development of polymeric nanoparticles for blood-brain barrier transfer—strategies and challenges. Advanced science, 8(10), 2003937. https://doi.org/10.1002/advs.202003937

  40. [40] Elmowafy, M., Shalaby, K., Elkomy, M. H., Alsaidan, O. A., Gomaa, H. A. M., Abdelgawad, M. A., & Mostafa, E. M. (2023). Polymeric nanoparticles for delivery of natural bioactive agents: Recent advances and challenges. Polymers, 15(5), 1–34. https://doi.org/10.3390/polym15051123

  41. [41] Rostaminejad, B., Dinari, M., Karimi, A. R., & Hadizadeh, M. (2023). Oxidative cross-linking of biocompatible chitosan injectable hydrogel by perylene-dopamine to boost phototoxicity of perylene on in vitro melanoma and breast cancer therapy. Journal of molecular liquids, 386, 122553. https://doi.org/10.1016/j.molliq.2023.122553

  42. [42] Tian, B., Hua, S., & Liu, J. (2023). Multi-functional chitosan-based nanoparticles for drug delivery: Recent advanced insight into cancer therapy. Carbohydrate polymers, 315, 120972. https://doi.org/10.1016/j.carbpol.2023.120972

  43. [43] Wickens, J. M., Alsaab, H. O., Kesharwani, P., Bhise, K., Amin, M. C. I. M., Tekade, R. K., … ., & Iyer, A. K. (2017). Recent advances in hyaluronic acid-decorated nanocarriers for targeted cancer therapy. Drug discovery today, 22(4), 665–680. https://doi.org/10.1016/j.drudis.2016.12.009

  44. [44] He, P., Dai, L., Wei, J., Zhu, X., Li, J., Chen, Z., & Ni, Y. (2022). Nanocellulose-based hydrogels as versatile drug delivery vehicles: A review. International journal of biological macromolecules, 222, 830–843. https://doi.org/10.1016/j.ijbiomac.2022.09.214

  45. [45] Gholamali, I., & Yadollahi, M. (2020). Doxorubicin-loaded carboxymethyl cellulose/Starch/ZnO nanocomposite hydrogel beads as an anticancer drug carrier agent. International journal of biological macromolecules, 160, 724–735. https://doi.org/10.1016/j.ijbiomac.2020.05.232

Published

2025-07-17

How to Cite

Malek Mohammadi, N. . . (2025). Biopolymers As Smart Drug Carriers in Cancer Therapy: Innovations and Perspectives. Biocompounds, 2(3), 140-152. https://doi.org/10.48313/bic.vi.41